Order Now

the uses of the normal distribution and the application of the Empirical Rule as well as the Central Limit Theorem

Category:

No matching category found.

0 / 5. 0

Words: 275

Pages: 1

1188

Normal Distribution, Empirical Rule, and Central Limit Theorem
Name
Institution
Normal Distribution, Empirical Rule, and Central Limit Theorem
Iron Levels in a Population
Mean = 15.5 gdL
Standard deviation = 1.6 gdL
Single Patient
Based on the empirical rule, 68% of the data values will fall ±1 SD of the mean. To calculate the values;
15.5 − 1.6 = 13.9
15.5 + 1.6 = 17.1
The range of numbers is 13.9 to 17.1
Next, 95% of the data values fall ±2 SD of the mean. The values are;
15.5 – 2(1.6) = 12.3
15.5 + 2(1.6) = 18.7
The range of numbers is 12.3 to 18.7
Finally, 99.7% of the data values will fall ±3 SD of the mean. They are;
15.5 – 3(1.6) = 10.7
15.5 + 3(1.6) = 20.3
The range of numbers is 10.7 to 20.3
Group of individuals
Sample size = 10
Using Central Limit Theorem,
Sample mean = 15
Standard Deviation = 0.32
Using empirical rule,
68% of the data values will fall ±1 SD of the mean. To calculate the values;
15 − 0.32 = 14.68
15 + 0.32 = 15.32
The range of numbers is 14.68 to 15.32
Next, 95% of the data values fall ±2 SD of the mean. The values are;
15 – 2(0.32) = 14.36
15 + 2(0.32) = 15.64
The range of numbers is 14.36 to 15.64
Finally, 99.7% of the data values will fall ±3 SD of the mean. They are;
15 – 3(0.32) = 14.04
15 + 3(0.32) = 15.96
The range of numbers is 14.04 to 15.96
Variables or measures that would probably follow a normal distribution.
The distribution of height and weight in the general population. The normal distribution is due to the Central Limit Theorem, which asserts that values that are a result of multiple small instances that are not too correlated results in that form of distribution (Barron, 1986).

Wait! the uses of the normal distribution and the application of the Empirical Rule as well as the Central Limit Theorem paper is just an example!

For instance, height is determined by several genes, nutrition, and many other independent factors.

References
Barron, A. R. (1986). Entropy and the central limit theorem. The Annals of Probability, 336-342.

Get quality help now

Top Writer

Nicolas Deakins

5.0 (417 reviews)

Recent reviews about this Writer

I need to work a lot; that’s why I really didn’t have a single minute to focus on my thesis writing. These guys from AnyCustomWriting are real saviors. I don’t know how they knew what my professor expected to receive, but they definitely succeeded.

View profile

Related Essays

Engineering Admissions Essay

Pages: 4

(1100 words)

Occupational Therapy Program

Pages: 1

(550 words)

Finance Admission essay

Pages: 1

(550 words)

Healthcare Quality

Pages: 6

(1650 words)

Nursing Informatics

Pages: 1

(275 words)

Quiz1

Pages: 3

(825 words)

Medication Use Studies

Pages: 4

(1150 words)

Networked Services

Pages: 8

(2200 words)

Indebtedness In Ecuador From Birth

Pages: 3

(904 words)